Photoelectrochemical Performance Observed in Mn-Doped BiFeO3 Heterostructured Thin Films

نویسندگان

  • Hao-Min Xu
  • Huanchun Wang
  • Ji Shi
  • Yuanhua Lin
  • Cewen Nan
چکیده

Pure BiFeO₃ and heterostructured BiFeO₃/BiFe0.95Mn0.05O₃ (5% Mn-doped BiFeO₃) thin films have been prepared by a chemical deposition method. The band structures and photosensitive properties of these films have been investigated elaborately. Pure BiFeO₃ films showed stable and strong response to photo illumination (open circuit potential kept -0.18 V, short circuit photocurrent density was -0.023 mA·cm-2). By Mn doping, the energy band positions shifted, resulting in a smaller band gap of BiFe0.95Mn0.05O₃ layer and an internal field being built in the BiFeO₃/BiFe0.95Mn0.05O₃ interface. BiFeO₃/BiFe0.95Mn0.05O₃ and BiFe0.95Mn0.05O₃ thin films demonstrated poor photo activity compared with pure BiFeO₃ films, which can be explained by the fact that Mn doping brought in a large amount of defects in the BiFe0.95Mn0.05O₃ layers, causing higher carrier combination and correspondingly suppressing the photo response, and this negative influence was more considerable than the positive effects provided by the band modulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Magnetoelectric Effect in La-Doped BiFeO3 Multiferroic Thin Films Revealed by Magnetic-Field-Assisted Scanning Probe Microscopy

Multiferroic La-doped BiFeO3 thin films have been prepared by a sol-gel plus spin-coating process, and the local magnetoelectric coupling effect has been investigated by the magnetic-field-assisted scanning probe microscopy connected with a ferroelectric analyzer. The local ferroelectric polarization response to external magnetic fields is observed and a so-called optimized magnetic field of ~4...

متن کامل

Tunable Schottky Barrier in Photovoltaic BiFeO3 Based Ferroelectric Composite Thin Films

We examine the photo-assisted polarization loop in a BiFeO3 thin film under UV light illumination. BiFeO3 thin film prepared by pulsed laser deposition method onto the BaTiO3 thin film and the polarization behavior has been measured under poling voltage. Our results show the engineered polarization due to controllable schottky barrier under inverse poling voltage. This control on schottky barri...

متن کامل

Stabilisation of Fe2O3-rich Perovskite Nanophase in Epitaxial Rare-earth Doped BiFeO3 Films

Researchers have demonstrated that BiFeO3 exhibits ferroelectric hysteresis but none have shown a strong ferromagnetic response in either bulk or thin film without significant structural or compositional modification. When remanent magnetisations are observed in BiFeO3 based thin films, iron oxide second phases are often detected. Using aberration-corrected scanning transmission electron micros...

متن کامل

Synthesis and characterization of band gap-reduced ZnO:N and ZnO:(Al,N) films for photoelectrochemical water splitting

ZnO thin films with significantly reduced band gaps were synthesized by doping N and codoping Al and N at 100 C. All the films were synthesized by radiofrequency magnetron sputtering on F-doped tin-oxide-coated glass. We found that codoped ZnO: (Al,N) thin films exhibited significantly enhanced crystallinity compared with ZnO doped solely with N, ZnO:N, at the same growth conditions. Furthermor...

متن کامل

Evolution of polarization and space charges in semiconducting ferroelectrics

Related Articles High-temperature ferroelectric behaviors of poly(vinylidene fluoride-trifluoroethylene) copolymer ultrathin films with electroactive interlayers J. Appl. Phys. 111, 064506 (2012) The influence of Mn substitution on the local structure of Na0.5Bi0.5TiO3 crystals: Increased ferroelectric ordering and coexisting octahedral tilts J. Appl. Phys. 111, 064109 (2012) The improved polar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016